Exponents

Homework

An **exponent** tells how many times a number is used as a factor.

The **base** is the number being multiplied repeatedly.

For example, in 2^5 , 5 is the exponent and 2 is the base.

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

Write the expression 45 using equal factors. Then find the value.

- Step 1 Identify the base.
- Step 2 Identify the exponent.
- **Step 3** Write the base as many times as the exponent tells you. Place a multiplication symbol between the bases.
- Step 4 Multiply.

So. $4^5 = 1.024$.

The base is 4.

The exponent is 5.

$$4 \times 4 \times 4 \times 4 \times 4$$

You should have one less multiplication symbol than the value of the exponent.

$$4 \times 4 \times 4 \times 4 \times 4 = 1,024$$

Write as an expression using equal factors. Then find the value.

1. 3⁴

2. 2⁶

3. 4³

4. 5³

5. 10⁴

6. 8⁵

7. 11⁴

8. 15²

9. 10⁷

o. 254 extra

Chapter Resources

© Houghton Mifflin Harcourt Publishing Company

Evaluate Expressions Involving Exponents

A numerical expression is a mathematical phrase that includes only numbers and operation symbols.

You evaluate the expression when you perform all the computations.

To evaluate an expression, use the **order of operations**.

Order of Operations

- 1. Parentheses
- 2. Exponents
- 3. Multiply and Divide
- 4. Add and Subtract

Evaluate the expression $(10 + 6^2) - 4 \times 10$.

Step 1 Start with the parentheses. Use the order of operations for the computations inside the parentheses.

 $10 + 6^2$ Find the value of the number with an exponent. Rewrite as multiplication: $10 + 6^2 = 10 + 6 \times 6$ Multiply and divide from left to right: $10 + 6 \times 6 = 10 + 36$ Add and subtract from left to right:

$$10 + 36 = 46$$

 $(10 + 6^2) - 4 \times 10 = 46 - 4 \times 10$

Step 2 Rewrite the original expression, using the value from Step 1 for the part in parentheses.

Step 3 Now that the parentheses are cleared, look for exponents.

Step 4 Multiply and divide from left to right.

Step 5 Add and subtract from left to right.

So,
$$(10 + 6^2) - 4 \times 10 = 6$$
.

There are no more exponents, so go on to the next step in the order of operations.

$$46 - 4 \times 10 = 46 - 40$$

 $46 - 40 = 6$

Evaluate the expression.

1.
$$8^2 - (7^2 + 1)$$

2.
$$5-2^2+12 \div 4$$

3.
$$8 \times (16 - 2^4)$$

4.
$$3^2 \times (28 - 20 \div 2)$$

4.
$$3^2 \times (28 - 20 \div 2)$$
 5. $(30 - 15 \div 3) \div 5^2$ **6.** $(6^2 - 3^2) - 9 \div 3$

6.
$$(6^2 - 3^2) - 9 \div 3$$